

▶▶ Under the patronage of **H.E. Dr. Abdullah Belhaif Al Nuaimi -** Minister of Infrastructure Development

▶► 17th Edition

International Operations & Maintenance Conference in the Arab Countries

19, 20, 21 NOV 2019

Le Meridien Dubai Hotel & Conference Centre United Arab Emirates

Under the Theme:

Enhancing Maintenance Through Big Data Management

Dr. Moustafa Kassab

-- Agenda

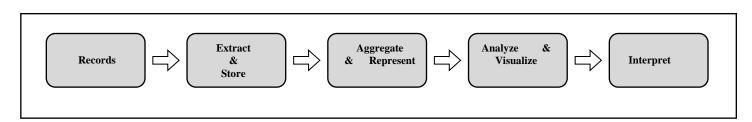
- ➤ Infrastructure Assets /Challenges/ Opportunities
- > Information / Communication Technology
- Big Data and Big Data Analytics
- Big Data Technology for Infrastructure
- ➤ BD in Infrastructure's Engineering Construction & Maintenance
- Conclusion

Infrastructure Challenges

- Importance to economy and social developments
- Ageing infrastructure
- ➤ Increasing population ⇒ Massive users
- Budgets cut toward health and education
- Spread of digital economy
- Massive information: Critical analysis
- > Smart cities: Smart-Infrastructure assets
- Sustainability
- Making right decisions

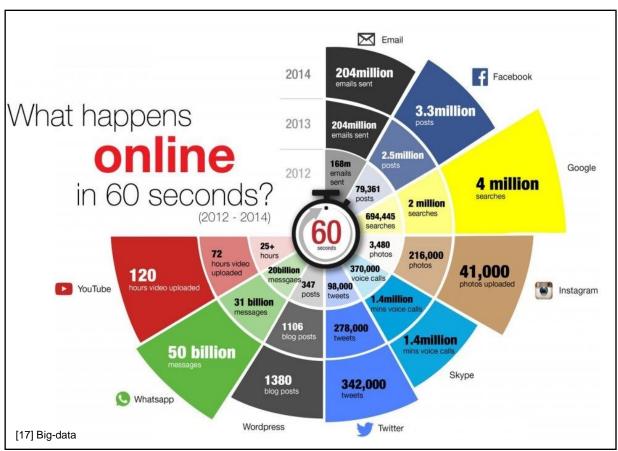
▶▶ Digital Age and 4th Industrial Revaluation

- > Gigantic : in Volume
- Varied in type
- Fast in production velocity
- Super exponential in its generation
- Real -Time advantage
- Easy to use: Collect, Storage, Analysis
- Appropriate: Handling
 - Utilization
 - Socio-Economy Benefits

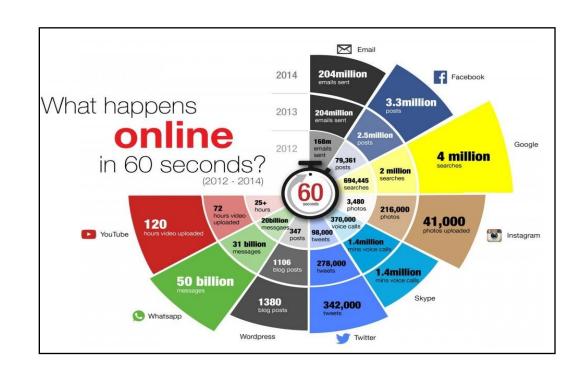


- CCTV
- Sensors
- Cameras
- Smart Phones
- GPS
- Mega Servers
- Smart computers

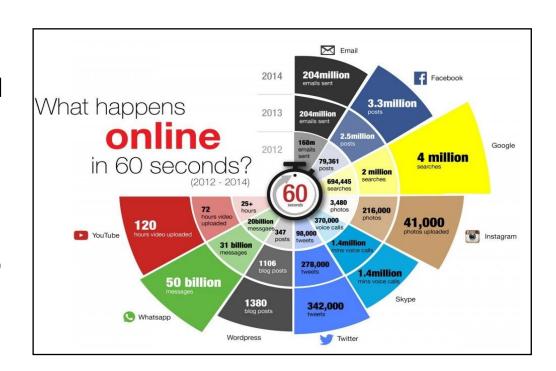
▶▶ Big Data for Infrastructure


Big Data: Refers to datasets whose size is beyond the ability of typical database software tools to capture, store, manage, and analyze:

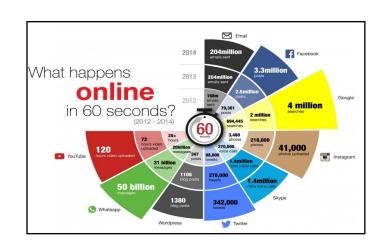
- > Has many characteristics
- Invent big data platform technology: Hadoop.
- ➤ Hadoop: widely used in business and large Internet companies (Amazon)
- > Big data analytics can process economic and environmental data
- Can make in-depth useful analysis to make the right decisions and forecast close to accurate expectations and lay down precautions and risks


▶▶ Big Data for Infrastructure

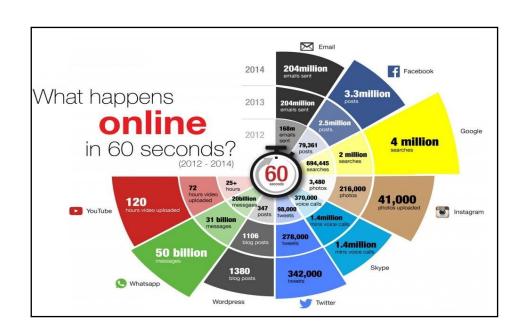
- Examples of Big Data
- Twitters
- LinkedIn
- Face Book
- Website
- Wikipedia
- Machine generated data
- Sensors data
- Call data records
- Smart Meters
- Manufacturing sensors
- Data Acquisition tools
- Traffic data
- Air data
- Weather data
- Traduis systems


▶▶ Volume

- ➤ Every single day, "Over 2.5 quintillion bytes of data are created
- ➤ 2020 on earth: it's estimated that 1.7MB of data will be created/ Second/ person
- Exponentially increase: > 90% of the world's data has been created in the last two years.

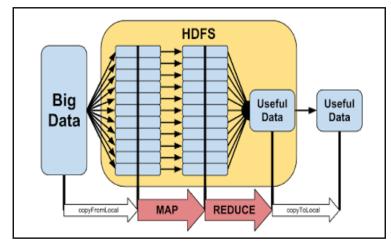

Velocity

- ➤ The speed at which the data is being generated
- streamed data from various smart devices: social media, sensors, camera...etc
- ➤ Big data grows very rapidly, generating quantities need to be stored, transmitted, & quickly processed.


▶▶ Variety

- ➤ Big data comes from:
 - 1- Structured data: inserts a data warehouse already tagged and easily sorted.
 - 2-Unstructured data: random and difficult to analyze. Comes in the form of text documents, email, video, audio.
 - 3- Semi structured data: not conform to fixed fields, but contains tags to separate data elements.
- Merging and managing such different forms is one of the aspects of Big Data

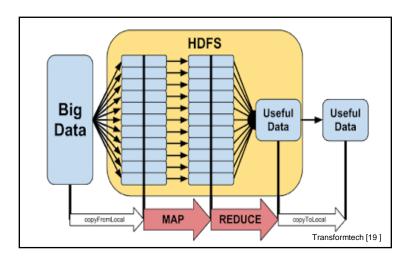
Veracity


- Refers to the biases, noise and abnormality in data.
- Biggest challenge compare to volume and velocity.
- ➤ In particular if the data that is being stored and mined is meaningful to the problem being analyzed.

▶▶ Big Data for Infrastructure

a) HADOOP

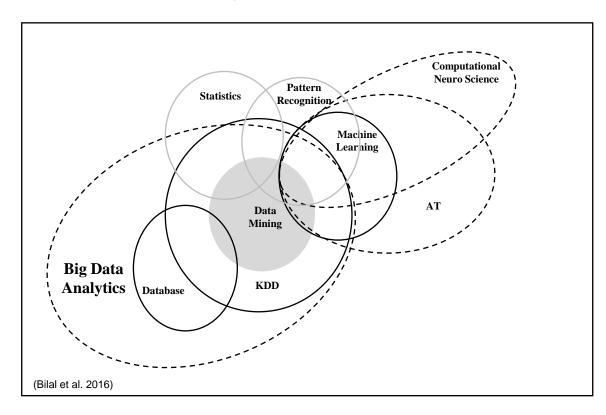
- ➤ New way to store, Retrieve, and process massive amount of data.
- ➤ Enables distributed computing of huge amount of data across inexpensive servers
- ➤ store and process data with enormous processing power = ➤ ability to handle virtually limitless concurrent tasks or jobs.



Big-Data Platform

- 1-The storage part of Hadoop: called **HDFS**
- 2- The processing part: called **Map Reduce**.

▶▶ Big Data for Infrastructure b) MAP REDUCE


- The programming paradigm that allows for massive scalability across hundreds or thousands of servers in the Hadoop cluster.
- ➤ The heart of Hadoop where the processing is carried out by assigning the tasks to various clusters.
- ➤ simultaneously, process multiple files:
 = ➤ Processed minimizing the computation time

Big-Data Platform

▶▶ Big Data for Infrastructure

- > Big Data Analytics and Artificial Intelligence
- Big Data Analytics:
 Rich intellectual tradition
- Borrows from a wide variety of fields.
- Statistics, Data Mining, Predictive Analytics, Business Analytics, and Knowledge Discovery from Data (KDD), Data Analytics, Data Science and now Big Data.

▶▶ Big Data Analytics and Artificial Intelligence (AI)

- > Artificial Intelligence (AI): 5th incoming industrial revolution
- ➤ AI techniques: Neural Networks, Expert system, Machine leanings, Image processing, Pattern recognitions, Voice recognitions, and Fuzzy-logic...etc.
- ➤ AI tools + Big-Data Mining = Provide proper analysis and accurate engineering design, prediction, and decision making
- ➤ Al tools + Big-Data Mining = Help engineers in improving project performance (reducing delivery times, environmental impact, expenses)
- ➤ Al tools + Big-Data Mining = ➤ makes use of terabytes of information stored on the cloud by big-time service providers (Google, Oracle, IBM...)
- ➤ Al tools + Big-Data Mining = Make sure that confidence engineers & decision makers don't miss out on an opportunity for improvement.

►► Sample Potential usage of Big Data in Infrastructure

- ➤ Big data technology helps engineers design massive infrastructures, while avoiding normally unforeseen Problems
- ➤ Design of Construction, and maintenance Management Systems
- > Estimation and teams Management for the proposed projects
- > In depth analysis for monitoring the Utilities health
- Analytics Big Data in Environmental Engineering
- ➤ Prediction of users capacities for Design, construction, and maintenance of Highway, Transportation, Water and Waste water networks

►► Sample Potential usage of Big Data in Infrastructure

- Geo-Technical Engineering applications
- Earthquake, and floods severity Prediction to avoid risk and potential project setbacks
- > Coastal, Harbor prediction Engineering design, and construction
- > Big-Data analytics in Geo-spatial engineering and Surveying
- ➤ Many applications for Data analytics in the field of Geographical Information System (GIS)
- ➤ Advanced Transportation: evaluate and analyze massive amounts of data generated by transportation and traffic systems.

Sample Potential usage of Big Data in Infrastructure

▶▶ Design, Construction, & Maintenance Systems

- > Construction and maintenance Industry of infrastructure sector generate huge amounts of information.
- ➤ Big data storage and analytics information are not properly benefiting from this data.
- Most of infrastructure stakeholders are using traditional computers & software for structure design computer aided drafting (CAD), and project details.
- ➤ Majority of engineers and decision makers in infrastructure sector are not aware of Big-Data technology & trends in storage and processing in Europe and Arab countries.

Sample Potential usage of Big Data in Infrastructure

▶▶ Design, Construction, & Maintenance Systems

- > Construction data will be gathered and stored for the future projects
- ➤ Applying big data analytics: the large amounts of data collected from various resources will be stored in the HDFS and then processed through Map Reduce to obtain the better results.
- Significant opportunities to scientists and practitioners: identifying useful insights & knowledge.
- ➤ BIM is envisioned to capture multi-dimensional CAD information systematically for supporting multidisciplinary collaboration.

Sample Potential usage of Big Data in Infrastructure

►► Floods, Users volume, Earthquake severity prediction

- > Natural disaster: Hard to predict uncertainty
- Cause painful losses in lives and property.
- > Minimization and mitigation its risks: Main concerns for Engs. & DMs.
- ➤ Big data: Geographical, weather data, soil, buildings performance history...etc
- ➤ HDFS storage and MapReduce process = ► Early Prediction.
- ➤ Avoid risks: Taking proper engineering and construction process for protection and mitigation

Conclusions

- ➤ Infrastructure challenges / Opportunities
- > Construction of New Utilities, Maintenance of Existing ones
- >Lack of Big data utilization in most Europe and the Arab countries.
- > Big-data emersions: Endless world of Opportunities and benefits
- ➤ Big-data intergradations with infrastructure engineering, construction and maintenance
- Sample applications of Big-data with Infrastructure sector
- ➤ Big-data advantages in creating sustainable infrastructure
- > Potential Benefits: Users, national economy, and environment

- [1] Dan Benta, Lucia Rusu, Marius Podean, Raluca Arba. (2012). "Web Based pavement maintenance and monitoring system". 2nd World Conference on Innovation and Computer Sciences, 2012, Romania.
- [2] Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C. & Byers, A.(2011). "Big data: The next frontier for innovation, competition, and productivity". McKinsey Global Institute.
- [3] Tien, J. (2013). "Big Data: Unleashing information". J. Systems Sc. and Systems Eng. 22, 127-151.
- [4] Waller. & Fawcetts. (2013). "Data science, predictive analytics, and big data: A revolution that will transform supply chain design and management". *Journal of Business Logistics*, 34, 77-84.
- [5] Robert P. Biuk-Aghai and Simon Fong. (2016). "Big data analytics for transportation: Problems and prospects for its application in China". *IEEE Region 10 Symposium*, Bali, Indonesia
- [6] Youseok Kang, JiayanYu, Jiarui Chang. (2017). "Big Data Analytics in Civil Engineering: The Case of China". SSRG International Journal of Civil Engineering. (SSRG IJCE), Volume 4 Issue 10 October 2017.
- [7] Hore, A. (2006). "Use of IT in Managing Information and Data on Construction Projects A Perspective for the IRISH Construction Industry". Information Technology in Construction Project Management.
- [8] Sai On Cheung, H. C. (2004). "PPMS: A Web-based Construction Project Performance Monitoring System". Automation in Construction, 361-376.
- [9] Leu, Y.-M. C.-S. (2011). "Integrating data mining with KJ method to classify bridge construction defects". Expert Systems with Applications, 7143-7150.
- [10] Kunz J. and Fischer M. (2005). "Virtual Design and Construction: Themes, Case Studies and Implementation Suggestions". CIFE Working Paper #097, Center For Integrated Facility Engineering, Stanford University, USA
- [11] Jae-Gil Lee, M. K. (2015). "Geospatial Big Data: Challenges and Opportunities". Big Data Research, 74-81.
- [12] Muhammad Bilal, Lukumon O. Oyedele, Junaid Qadir, Maruf Pasha. (2016). "Big Data in the construction industry: A review of present status, opportunities, and future trends". Journal of Advanced Engineering Informatics .30(3):500-521
- [13] https://www.zdnet.com/article/what-is-big-data: (Accessed on August 10, 2019)
- [14] S.R Kim, M.M Kang (2014). "Today and the Future of Big Data analytics technology", The Korean Institute of Information Scientists and Engineering, vol. 1, pp. 8-17, 2014
- [15] Basics of Big Data: http://www.sliceofbi.com/2015/09/basics-of-big-data.html: (Accessed on August 10, 2019)
- [16] How Much Data Is Generated Every Minute? https://www.socialmediatoday.com/news/how-much-data-is-generated-every-minute-infographic-1/525692/ (Accessed on August 10, 2019)
- [17] Big data: http://www.anishsneh.com/2014/07/big-data-volume-velocity-and-variety.html (Accessed on August 10, 2019)
- [18] Understanding-basics-of-HDFS: https://community.cloudera.com/t5/Community-Articles/Understanding-basics-of-HDFS-and-YARN/ta-p/248860 (Accessed on August 10, 2019)
- [19] Transfortech.com: http://user-manual-guide.blogspot.com/2016/03/hadoop-mapreduce-architecture.html (Accessed on August 10, 2019)
- [20] Abdelkarim Ben Ayed, Mohamed Ben Halima, Adel M. Alimi. (2015). "Big Data Analytics for Logistics and Transportation". The 4th IEEE International Conference on Advanced Logistics and Transport (IEEE ICALT'2015).

Thank You